X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

A hypomorphic myogenin allele reveals distinct myogenin expression levels required for viability, skeletal muscle development, and sternum formation.

Authors:
Vivian JL, Gan L, Olson EN, Klein WH
Affiliation:
Journal:
Developmental biology

Abstract

The myogenic basic helix-loop-helix transcription factor myogenin plays an essential role in the differentiation of skeletal muscle and, secondarily, in rib and sternum formation during mouse development. However, virtually nothing is known about the quantitative requirements for myogenin in these processes. Here, we describe the generation of mice carrying a hypomorphic allele of myogenin, which expresses myogenin transcripts at approximately one-fourth the level of the wild-type myogenin allele. The hypomorphic allele in combination with wild-type and myogenin-null alleles was used to create an allelic series. Embryos representing the complete range of genotypes from homozygous wild type to homozygous null were analyzed for their viability, ability to form normal ribs and sternum, and extent of skeletal muscle differentiation. Embryos carrying the hypomorphic myogenin allele over a wild-type allele were normal. In embryos bearing homozygous hypomorphic alleles, the sternum developed normally and extensive skeletal muscle differentiation occurred. However, muscle hypoplasia and reduced muscle-specific gene expression were apparent in these embryos, and the mice were not viable as neonates. When the hypomorphic allele was placed over a myogenin-null allele, the resulting embryos had sternum defects resembling homozygous myogenin-null embryos, and there was severe muscle hypoplasia. Our results demonstrate that skeletal muscle formation is highly sensitive to the absolute levels of myogenin and that correct sternum formation, skeletal muscle differentiation, and viability each require distinct threshold levels of myogenin.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X