Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function.

Authors:
Feng G, Krejci E, Molgo J, Cunningham JM, Massoulié J, Sanes JR
Affiliation:
Journal:
The Journal of cell biology

Abstract

Acetylcholinesterase (AChE) occurs in both asymmetric forms, covalently associated with a collagenous subunit called Q (ColQ), and globular forms that may be either soluble or membrane associated. At the skeletal neuromuscular junction, asymmetric AChE is anchored to the basal lamina of the synaptic cleft, where it hydrolyzes acetylcholine to terminate synaptic transmission. AChE has also been hypothesized to play developmental roles in the nervous system, and ColQ is also expressed in some AChE-poor tissues. To seek roles of ColQ and AChE at synapses and elsewhere, we generated ColQ-deficient mutant mice. ColQ-/- mice completely lacked asymmetric AChE in skeletal and cardiac muscles and brain; they also lacked asymmetric forms of the AChE homologue, butyrylcholinesterase. Thus, products of the ColQ gene are required for assembly of all detectable asymmetric AChE and butyrylcholinesterase. Surprisingly, globular AChE tetramers were also absent from neonatal ColQ-/- muscles, suggesting a role for the ColQ gene in assembly or stabilization of AChE forms that do not themselves contain a collagenous subunit. Histochemical, immunohistochemical, toxicological, and electrophysiological assays all indicated absence of AChE at ColQ-/- neuromuscular junctions. Nonetheless, neuromuscular function was initially robust, demonstrating that AChE and ColQ do not play obligatory roles in early phases of synaptogenesis. Moreover, because acute inhibition of synaptic AChE is fatal to normal animals, there must be compensatory mechanisms in the mutant that allow the synapse to function in the chronic absence of AChE. One structural mechanism appears to be a partial ensheathment of nerve terminals by Schwann cells. Compensation was incomplete, however, as animals lacking ColQ and synaptic AChE failed to thrive and most died before they reached maturity.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X