X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

SPI-B activates transcription via a unique proline, serine, and threonine domain and exhibits DNA binding affinity differences from PU.1.

Authors:
Rao S, Matsumura A, Yoon J, Simon MC
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

SPI-B is a B lymphocyte-specific Ets transcription factor that shares a high degree of similarity with PU.1/SPI-1. In direct contrast to PU.1(-/-) mice that die in utero and lack monocytes, neutrophils, B cells, and T cells, Spi-B-/- mice are viable and exhibit a severe B cell proliferation defect. Since PU.1 is expressed at wild type levels in Spi-B-/- B cells, the mutant mice provide genetic evidence that SPI-B and PU.1 have at least some non-redundant roles in B lymphocytes. To begin to understand the molecular basis for these defects, we delineated functional domains of SPI-B for comparison to those of PU.1. By using a heterologous co-transfection system, we identified two independent transactivation domains in the N terminus of SPI-B. Interestingly, only one of these domains (amino acids 31-61), a proline/serine/threonine-rich region, unique among Ets proteins, is necessary for transactivation of the immunoglobulin lambda light chain enhancer. This transactivation motif is in marked contrast to PU.1, which contains acidic and glutamine-rich domains. In addition, we describe a functional PU.1 site within the c-FES promoter which SPI-B fails to bind efficiently and transactivate. Finally, we show that SPI-B interacts with the PU.1 cofactors Pip, TBP, c-Jun and with lower affinity to nuclear factor interleukin-6beta and retinoblastoma. Taken together, these data suggest that SPI-B binds DNA with a different affinity for certain sites than PU.1 and harbors different transactivation domains. We conclude that SPI-B may activate unique target genes in B lymphocytes and interact with unique, although currently unidentified, cofactors.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X