X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism.

Authors:
Galan JM, Peter M
Affiliation:
Journal:
Proceedings of the National Academy of Sciences of the United States of America

Abstract

Ubiquitin-dependent degradation of regulatory proteins controls many cellular processes, including cell cycle progression, morphogenesis, and signal transduction. Skp1p-cullin-F-box protein (SCF) complexes are ubiquitin ligases composed of a core complex including Skp1p, Cdc53p, one of multiple F-box proteins that are thought to provide substrate specificity to the complex, and the ubiquitin-conjugating enzyme, Cdc34p. It is not understood how SCF complexes are regulated and how physiological conditions alter their levels. Here we show that three F-box proteins, Grr1p, Cdc4p, and Met30p, are unstable components of the SCF, and are themselves degraded in a ubiquitin- and proteasome-dependent manner in vivo. Ubiquitination requires all the core components of the SCF and an intact F-box, suggesting that ubiquitination occurs within the SCF complex by an autocatalytic mechanism. Cdc4p and Grr1p are intrinsically unstable, and their steady-state levels did not fluctuate through the cell cycle. Taken together, our results suggest that ubiquitin-dependent degradation of F-box proteins allows rapid switching among multiple SCF complexes, thereby enabling cells to adapt quickly to changing physiological conditions and progression through different phases of the cell cycle.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X