X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein.

Authors:
Li X, Peng H, Schultz DC, Lopez-Guisa JM, Rauscher FJ, Marmorstein R
Affiliation:
Journal:
Cancer research

Abstract

The evolutionarily conserved BTB/POZ domain from the promyelocytic leukemia zinc finger (PLZF) oncoprotein mediates transcriptional repression through the recruitment of corepressor proteins containing histone deacetylases in acute promyelocytic leukemia. We have determined the 2.0 A crystal structure of the BTB/POZ domain from PLZF (PLZF-BTB/POZ), and have carried out biochemical analysis of PLZF-BTB/POZ harboring site-directed mutations to probe structure-function relationships. The structure reveals a novel alpha/beta homodimeric fold in which dimer interactions occur along two surfaces of the protein subunits. The conservation of BTB/POZ domain residues at the core of the protomers and at the dimer interface implies an analogous fold and dimerization mode for BTB/POZ domains from otherwise functionally unrelated proteins. Unexpectedly, the BTB/POZ domain forms dimer-dimer interactions in the crystals, suggesting a mode for higher-order protein oligomerization for BTB/POZ-mediated transcriptional repression. Biochemical characterization of PLZF-BTB/POZ harboring mutations in conserved residues involved in protein dimerization reveals that the integrity of the dimer interface is exquisitely sensitive to mutation and that dimer formation is required for wild-type levels of transcriptional repression. Interestingly, similar mutational analysis of residues within a pronounced protein cleft along the dimer interface, which had been implicated previously for interaction with corepressors, has negligible effects on dimerization or transcriptional repression. Together, these studies form a structure-function framework for understanding BTB/POZ-mediated oligomerization and transcriptional repression properties.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X