X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(+/-) knockout mouse.

Authors:
Srivastava M, Atwater I, Glasman M, Leighton X, Goping G, Caohuy H, Miller G, Pichel J, Westphal H, Mears D, Rojas E, Pollard HB
Affiliation:
Journal:
Proceedings of the National Academy of Sciences of the United States of America

Abstract

The mammalian anx7 gene codes for a Ca(2+)-activated GTPase, which supports Ca(2+)/GTP-dependent secretion events and Ca(2+) channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca(2+) signaling in secreting pancreatic beta cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the beta cells. The nullizygous anx7 (-/-) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/-) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/-) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca(2+) channel functions are normal. However, electrooptical recordings indicate that the (+/-) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP(3))-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP(3) receptor expression and function in pancreatic islets. The profound increase in islets, beta cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic beta cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca(2+) signaling through IP(3)-sensitive Ca(2+) stores.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X