Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Disruption of cytoplasmic and mitochondrial folylpolyglutamate synthetase activity in Saccharomyces cerevisiae.

DeSouza L, Shen Y, Bognar AL
Archives of biochemistry and biophysics


Similar to other eukaryotes, yeasts have parallel pathways of one-carbon metabolism in the cytoplasm and mitochondria and have folylpolyglutamate synthetase activity in both compartments. The gene encoding folylpolyglutamate synthetase is MET7 (also referred to as MET23) on chromosome XV and appears to encode both the cytoplasmic and mitochondrial forms of the enzyme. In order to determine the metabolic roles of both forms of folylpolyglutamate synthetase, we disrupted the met7 gene and determined that the strain is a methionine auxotroph and an adenine and thymidine auxotroph when grown in the presence of sulfanilamide. The met7 mutant becomes petite under normal growth conditions but can be maintained with a grande phenotype if the strain is tup and all media are supplemented with dTMP. A met7 gly1 strain is auxotrophic for glycine when grown on glucose but prototrophic when grown on glycerol. A met7 ser1 strain cannot use glycine to suppress the serine auxotrophy of the ser1 phenotype. A met7 shm2 strain is nonviable. In order to disrupt just the mitochondrial folylpolyglutamate synthetase activity, we constructed mutants with an inactivated chromosomal MET7 gene complemented by genes that express only cytoplasmic folylpolyglutamate synthetase, including the Lactobacillus casei folC gene and the yeast MET7 gene with its mitochondrial leader sequence deleted (MET7Deltam). All the genes providing cytoplasmic folylpolyglutamate synthetase complemented the methionine auxotrophy as well as the synthetic lethality of the shm2 strain and the synthetic glycine auxotrophy of the gly1 strain. The strains lacking the mitochondrial folylpolyglutamate synthetase had longer doubling times than the isogenic wild-type strains but retained the function of the mitochondrial folate-dependent enzymes to produce formate, serine, and glycine. Mutants complemented by the bacterial folC gene or by the MET7Deltam gene on a 2mu plasmid remained grande without the tup mutation and supplementation and dTMP. Mutants complemented by the MET7Deltam gene integrated in single copy became petites under those conditions, indicating a deficiency in dTMP production but this is likely due to lower expression of cytoplasmic folylpolyglutamate synthetase by the MET7Deltam gene.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.