Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Conformational changes and coactivator recruitment by novel ligands for estrogen receptor-alpha and estrogen receptor-beta: correlations with biological character and distinct differences among SRC coactivator family members.

Authors:
Kraichely DM, Sun J, Katzenellenbogen JA, Katzenellenbogen BS
Affiliation:
Journal:
Endocrinology

Abstract

Ligands for the estrogen receptor (ER) that have the capacity to selectively bind to or activate the ER subtypes ERalpha or ERbeta would be useful in elucidating the biology of these two receptors and might assist in the development of estrogen pharmaceuticals with improved tissue selectivity. In this study, we examine three compounds of novel structure that act as ER subtype-selective ligands. These are a propyl pyrazole triol (PPT), which is a potent agonist on ERalpha but is inactive on ERbeta, and a pair of substituted tetrahydrochrysenes (THC), one enantiomer of which (S,S-THC) is an agonist on both ERalpha and ERbeta, the other (R,R-THC) being an agonist on ERalpha but an antagonist on ERbeta. To investigate the molecular mechanisms underlying the ER subtype-selective actions of these compounds, we have determined the conformational changes induced in ERalpha and ERbeta by these ligands using protease digestion sensitivity, and we have tested the ability of these ligands to promote the recruitment of representatives of the three SRC/p160 coactivator protein family members (SRC-1, GRIP-1, ACTR, respectively) to ERalpha and ERbeta using yeast two-hybrid and glutathione-S-transferase (GST) pull-down assays. We find that the ligand-ER protease digestion pattern is distinctly different for stimulatory and inhibitory ligands, and that this assay, as well as coactivator recruitment, are excellent indicators of their agonist/antagonist character. Interestingly however, compared with estradiol, the novel agonist ligands show some quantitative differences in their ability to recruit SRC-1, -2, and -3. This implies that while generally similar to estradiol, these ligands induce ER conformations that differ somewhat from that induced by estradiol, differences that are illustrative of the nature of their biological character. The application of methods to characterize the conformations induced in ER subtypes by novel ligands, as done in this study, enables a greater understanding of how ligand-receptor conformations relate to estrogen agonist or antagonist behavior.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X