NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity.

Authors:
Chang NS, Pratt N, Heath J, Schultz L, Sleve D, Carey GB, Zevotek N
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

To determine how hyaluronidase increases certain cancer cell sensitivity to tumor necrosis factor (TNF) cytotoxicity, we report here the isolation and characterization of a hyaluronidase-induced murine WW domain-containing oxidoreductase (WOX1). WOX1 is composed of two N-terminal WW domains, a nuclear localization sequence, and a C-terminal alcohol dehydrogenase (ADH) domain. WOX1 is mainly located in the mitochondria, and the mitochondrial targeting sequence was mapped within the ADH domain. Induction of mitochondrial permeability transition by TNF, staurosporine, and atractyloside resulted in WOX1 release from mitochondria and subsequent nuclear translocation. TNF-mediated WOX1 nuclear translocation occurred shortly after that of nuclear factor-kappaB nuclear translocation, whereas both were independent events. WOX1 enhanced TNF cytotoxicity in L929 cells via its WW and ADH domains as determined using stable cell transfectants. In parallel with this observation, WOX1 also enhanced TRADD (TNF receptor-associated death domain protein)-mediated cell death in transient expression experiments. Antisense expression of WOX1 raised TNF resistance in L929 cells. Enhancement of TNF cytotoxicity by WOX1 is due, in part, to its significant down-regulation of the apoptosis inhibitors Bcl-2 and Bcl-x(L) (>85%), but up-regulation of pro-apoptotic p53 ( approximately 200%) by the ADH domain. When overexpressed, the ADH domain mediated apoptosis, probably due to modulation of expression of these proteins. The WW domains failed to modulate the expression of these proteins, but sensitized COS-7 cells to TNF killing and mediated apoptosis in various cancer cells independently of caspases. Transient cotransfection of cells with both p53 and WOX1 induced apoptosis in a synergistic manner. WOX1 colocalizes with p53 in the cytosol and binds to the proline-rich region of p53 via its WW domains. Blocking of WOX1 expression by antisense mRNA abolished p53 apoptosis. Thus, WOX1 is a mitochondrial apoptogenic protein and an essential partner of p53 in cell death.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X