NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Heterodimerization of mu and delta opioid receptors: A role in opiate synergy.

Authors:
Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA
Affiliation:
Journal:
The Journal of neuroscience : the official journal of the Society for Neuroscience

Abstract

Opiate analgesics are widely used in the treatment of severe pain. Because of their importance in therapy, different strategies have been considered for making opiates more effective while curbing their liability to be abused. Although most opiates exert their analgesic effects primarily via mu opioid receptors, a number of studies have shown that delta receptor-selective drugs can enhance their potency. The molecular basis for these findings has not been elucidated previously. In the present study, we examined whether heterodimerization of mu and delta receptors could account for the cross-modulation previously observed between these two receptors. We find that co-expression of mu and delta receptors in heterologous cells followed by selective immunoprecipitation results in the isolation of mu-delta heterodimers. Treatment of these cells with extremely low doses of certain delta-selective ligands results in a significant increase in the binding of a mu receptor agonist. Similarly, treatment with mu-selective ligands results in a significant increase in the binding of a delta receptor agonist. This robust increase is also seen in SKNSH cells that endogenously express both mu and delta receptors. Furthermore, we find that a delta receptor antagonist enhances both the potency and efficacy of the mu receptor signaling; likewise a mu antagonist enhances the potency and efficacy of the delta receptor signaling. A combination of agonists (mu and delta receptor selective) also synergistically binds and potentiates signaling by activating the mu-delta heterodimer. Taken together, these studies show that heterodimers exhibit distinct ligand binding and signaling characteristics. These findings have important clinical ramifications and may provide new foundations for more effective therapies.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X