Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Localization and enhanced current density of the Kv4.2 potassium channel by interaction with the actin-binding protein filamin.

Authors:
Petrecca K, Miller DM, Shrier A
Affiliation:
Journal:
The Journal of neuroscience : the official journal of the Society for Neuroscience

Abstract

Kv4.2 potassium channels play a critical role in postsynaptic excitability. Immunocytochemical studies reveal a somatodendritic Kv4.2 expression pattern, with the channels concentrated mainly at dendritic spines. The molecular mechanism that underlies the localization of Kv4.2 to this subcellular region is unknown. We used the yeast two-hybrid system to identify the Kv4.2-associated proteins that are involved in channel localization. Here we demonstrate a direct interaction between Kv4.2 and the actin-binding protein, filamin. We show that Kv4.2 and filamin can be coimmunoprecipitated both in vitro and in brain and that Kv4.2 and filamin share an overlapping expression pattern in the cerebellum and cultured hippocampal neurons. To examine the functional consequences of this interaction, we expressed Kv4.2 in filamin(+) and filamin(-) cells and performed immunocytochemical and electrophysiological analyses. Our results indicate that Kv4.2 colocalizes with filamin at filopodial roots in filamin(+) cells but shows a nonspecific expression pattern in filamin(-) cells, with no localization to filopodial roots. Furthermore, the magnitude of whole-cell Kv4.2 current density is approximately 2.7-fold larger in filamin(+) cells as compared with these currents in filamin(-) cells. We propose that filamin may function as a scaffold protein in the postsynaptic density, mediating a direct link between Kv4.2 and the actin cytoskeleton, and that this interaction is essential for the generation of appropriate Kv4.2 current densities.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X