X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks.

Authors:
Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, Simmons A, Williams SC, Giampietro V, Andrew CM, Taylor E
Affiliation:
Journal:
NeuroImage

Abstract

Conjunction analysis methods were used in functional magnetic resonance imaging to investigate brain regions commonly activated in subjects performing different versions of go/no-go and stop tasks, differing in probability of inhibitory signals and/or contrast conditions. Generic brain activation maps highlighted brain regions commonly activated in (a) two different go/no-go task versions, (b) three different stop task versions, and (c) all 5 inhibition task versions. Comparison between the generic activation maps of stop and go/no-go task versions revealed inhibitory mechanisms specific to go/no-go or stop task performance in 15 healthy, right-handed, male adults. In the go/no-go task a motor response had to be selectively executed or inhibited in either 50% or 30% of trials. In the stop task, the motor response to a go-stimulus had to be retracted on either 50 or 30% of trials, indicated by a stop signal, shortly (250 ms) following the go-stimulus. The shared "inhibitory" neurocognitive network by all inhibition tasks comprised mesial, medial, and inferior frontal and parietal cortices. Generic activation of the go/no-go task versions identified bilateral, but more predominantly left hemispheric mesial, medial, and inferior frontal and parietal cortices. Common activation to all stop task versions was in predominantly right hemispheric anterior cingulate, supplementary motor area, inferior prefrontal, and parietal cortices. On direct comparison between generic stop and go/no-go activation maps increased BOLD signal was observed in left hemispheric dorsolateral prefrontal, medial, and parietal cortices during the go/no-go task, presumably reflecting a left frontoparietal specialization for response selection.

SumsDB Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X