Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain.

Aoyama K, Nagata M, Oshima K, Matsuda T, Aoki N
The Journal of biological chemistry


A novel dual specificity phosphatase (DSP) designated LMW-DSP2 was cloned with a combination of reverse transcription-polymerase chain reaction and cDNA library screening strategies. The LMW-DSP2 open reading frame of 194 amino acids contained a single DSP catalytic domain but lacked the cdc25 homology domain, which is conserved in most known DSPs. Northern blot and reverse transcription-polymerase chain reaction analyses revealed that LMW-DSP2 was specifically expressed in testis. Recombinant LMW-DSP2 protein exhibited phosphatase activity toward an artificial low molecular weight substrate para-nitrophenyl phosphate, and the activity was inhibited completely by sodium orthovanadate but not sodium fluoride, pyrophosphate, and okadaic acid. The substitution of critical amino acid residues, aspartic acid and cysteine, resulted in a dramatic reduction of phosphatase activity. Transient transfection of LMW-DSP2 in COS7 cells resulted in the expression of a 21-kDa protein, and the phosphatase was shown to be distributed in both the cytosol and the nucleus. LMW-DSP2 dephosphorylated and deactivated p38, to a higher extent, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases, in transfected COS7 cells and in vitro. Interestingly, mutation in a conserved docking motif of p38 and SAPK/JNK as well as in a cluster of aspartic acids of LMW-DSP2 did not affect the deactivation of the mitogen-activated protein kinases by LMW-DSP2. Furthermore, the binding between LMW-DSP2 and p38 and SAPK/JNK was also not disrupted by such mutations. Among the DSPs lacking the cdc25 homology domain, LMW-DSP2 is the first one that dephosphorylates and deactivates p38 and SAPK/JNK.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.