Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets.

Schwer HD, Lecine P, Tiwari S, Italiano JE, Hartwig JH, Shivdasani RA
Current biology : CB


BACKGROUND: Mammalian megakaryocytes release blood platelets through a remarkable process of cytoplasmic fragmentation and de novo assembly of a marginal microtubule band. Cell-specific components of this process include the divergent beta-tubulin isoform beta1 that is expressed exclusively, and is the predominant isoform, in platelets and megakaryocytes. The functional significance of this restricted expression, and indeed of the surprisingly large repertoire of metazoan tubulin genes, is unclear. Fungal tubulin isoforms appear to be functionally redundant, and all mammalian beta-tubulins can assemble in a variety of microtubules, whereas selected fly and worm beta-tubulins are essential in spermatogenesis and neurogenesis. To address the essential role of beta1-tubulin in its natural context, we generated mice with targeted gene disruption. RESULTS: beta1-tubulin(-/-) mice have thrombocytopenia resulting from a defect in generating proplatelets, the immediate precursors of blood platelets. Circulating platelets lack the characteristic discoid shape and have defective marginal bands with reduced microtubule coilings. beta1-tubulin(-/-) mice also have a prolonged bleeding time, and their platelets show an attenuated response to thrombin. Two alternative tubulin isoforms, beta2 and beta5, are overexpressed, and the total beta-tubulin content of beta1-tubulin(-/-) megakaryocytes is normal. However, these isoforms assemble much less efficiently into platelet microtubules and are thus unable to compensate completely for the absence of beta1-tubulin. CONCLUSIONS: This is the first genetic study to address the essential functions of a mammalian tubulin isoform in vivo. The results establish a specialized role for beta1-tubulin in platelet synthesis, structure, and function.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.