Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins.

Authors:
Furia B, Deng L, Wu K, Baylor S, Kehn K, Li H, Donnelly R, Coleman T, Kashanchi F
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

Nuclear factor (NF)-kappaB transcription factors are involved in the control of a large number of normal cellular and organismal processes, such as immune and inflammatory responses, developmental processes, cellular growth, and apoptosis. Transcription of the human immunodeficiency virus type 1 (HIV-1) genome depends on the intracellular environment where the integrate viral DNA is regulated by a complex interplay among viral regulatory proteins, such as Tat, and host cellular transcription factors, such as NF-kappaB, interacting with the viral long terminal repeat region. CBP (CREB-binding protein) and p300, containing an intrinsic histone acetyltransferase (HAT) activity, have emerged as coactivators for various DNA-binding transcription factors. Here, we show that the p50 subunit as well as the p50/p65 of NF-kappaB, and not other factors such as SP1, TFIIB, polymerase II, TFIIA, or p65, can be acetylated by CBP/p300 HAT domain. Acetylation of p50 was completely dependent on the presence of both HAT domain and Tat proteins, implying that Tat influences the transcription machinery by aiding CBP/p300 to acquire new partners and increase its functional repertoire. Three lysines, Lys-431, Lys-440, and Lys-441 in p50 were all acetylated in vitro, and a sequence similarity among p50, p53, Tat, and activin receptor type I on these particular lysines was observed. All proteins have been shown to be acetylated by the CBP/p300 HAT domain. Acetylated p50 increases its DNA binding properties, as evident by streptavidin/biotin pull-down assays when using labeled NF-kappaB oligonucleotides. Increased DNA binding on HIV-1 long terminal repeat coincided with increases in the rate of transcription. Therefore, we propose that acetylation of the DNA binding domain of NF-kappaB aids in nuclear translocation and enhanced transcription and also suggest that the substrate specificity of CBP/p300 can be altered by small peptide molecules, such as HIV-encoded Tat.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X