X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications.

Authors:
Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A
Affiliation:
Journal:
Nature biotechnology

Abstract

The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has provided a myriad of applications for biological systems. Over the last several years, mutagenesis studies have improved folding properties of GFP (refs 1,2). However, slow maturation is still a big obstacle to the use of GFP variants for visualization. These problems are exacerbated when GFP variants are expressed at 37 degrees C and/or targeted to certain organelles. Thus, obtaining GFP variants that mature more efficiently is crucial for the development of expanded research applications. Among Aequorea GFP variants, yellow fluorescent proteins (YFPs) are relatively acid-sensitive, and uniquely quenched by chloride ion (Cl-). For YFP to be fully and stably fluorescent, mutations that decrease the sensitivity to both pH and Cl- are desired. Here we describe the development of an improved version of YFP named "Venus". Venus contains a novel mutation, F46L, which at 37 degrees C greatly accelerates oxidation of the chromophore, the rate-limiting step of maturation. As a result of other mutations, F64L/M153T/V163A/S175G, Venus folds well and is relatively tolerant of exposure to acidosis and Cl-. We succeeded in efficiently targeting a neuropeptide Y-Venus fusion protein to the dense-core granules of PC12 cells. Its secretion was readily monitored by measuring release of fluorescence into the medium. The use of Venus as an acceptor allowed early detection of reliable signals of fluorescence resonance energy transfer (FRET) for Ca2+ measurements in brain slices. With the improved speed and efficiency of maturation and the increased resistance to environment, Venus will enable fluorescent labelings that were not possible before.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X