Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Molecular interactions between desmosomal cadherins.

Authors:
Syed SE, Trinnaman B, Martin S, Major S, Hutchinson J, Magee AI
Affiliation:
Journal:
The Biochemical journal

Abstract

Desmocollins (Dscs) and desmogleins (Dsgs) are cell-adhesion molecules involved in the formation of desmosome cell-cell junctions and share structural similarities to classical cadherins such as E-cadherin. In order to identify and provide quantitative information on the types of protein-protein interactions displayed by the type 2 isoforms and investigate the role of Ca(2+) in this process, we have developed an Escherichia coli expression system to generate recombinant proteins containing the first two extracellular domains, namely Dsg2(1-2) and Dsc2(1-2). Analytical ultracentrifugation, chemical cross-linking, CD, fluorescence and BIAcore have been used to provide the first direct evidence of Ca(2+) binding to desmosomal cadherins. These studies suggest that Dsc2(1-2) not only exhibits homophilic interactions in solution, but can also form heterophilic interactions with Dsg2(1-2). The latter, on the other hand, shows much weaker homophilic association. Our results further demonstrate that heterophilic interactions are Ca(2+)-dependent, whereas the Ca(2+)-dependence of homophilic association is less clear. Our data indicate that the functional properties of Dsc2(1-2) are more similar to those of classical cadherins, consistent with the observation that Dsc shares a higher level of sequence homology with classical cadherins than does Dsg. In addition to corroborating the conclusions of previously reported transfection studies which suggest the formation of lateral heterodimers and homodimers, our results also provide direct quantitative information on the strength of these interactions which are essential for understanding the adhesion mechanism.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X