NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Molecular properties of wild-type and mutant betaIG-H3 proteins.

Authors:
Kim JE, Park RW, Choi JY, Bae YC, Kim KS, Joo CK, Kim IS
Affiliation:
Journal:
Investigative ophthalmology & visual science

Abstract

PURPOSE: BetaIG-H3 is a TGF-beta-induced cell adhesion molecule, the mutations of which are responsible for a group of 5q31-linked corneal dystrophies. The characteristic findings in these diseases are accumulation of protein deposits of different ultrastructures. To understand the mechanisms of protein deposits in 5q31-linked corneal dystrophies, the molecular properties of betaIG-H3 and the effects of mutation on these properties were studied in vitro. METHODS: Substitution mutations were generated by two-step PCR. Wild-type and mutant recombinant betaIG-H3 proteins were raised in Escherichia coli. For structural study, nondenaturing gel electrophoresis, cross-linking experiments, and electron microscopy examination were performed. A solid-phase interaction assay was performed for the interaction of betaIG-H3 with other matrix proteins. Wild-type and mutant betaIG-H3 cDNAs were cloned into a mammalian expression vector and overexpressed in the corneal epithelial cells by transient transfection. Immunoprecipitation and immunoblot analysis were performed with an antibody against human betaIG-H3. Cell adhesion was assayed by measuring enzyme activities of N-acetyl-beta-D-glucosaminidase. RESULTS: The recombinant betaIG-H3 protein self-assembled to form multimeric bands and appeared to have a fibrillar structure. Solid-phase in vitro interaction assay showed that it bound strongly to type I collagen, fibronectin, and laminin; moderately to collagen type II and VI; and minimally to collagen type IV. Five recombinant mutant forms of betaIG-H3 (R124C, R124H, R124L, R555W, and R555Q) commonly found in 5q31-linked corneal dystrophies did not significantly affect the fibrillar structure, interactions with other extracellular matrix proteins, or adhesion activity in cultured corneal epithelial cells. In addition, the mutations apparently produced degradation products similar to those of wild-type betaIG-H3. CONCLUSIONS: BetaIG-H3 polymerizes to form a fibrillar structure and strongly interacts with type I collagen, laminin, and fibronectin. Mutations found in the 5q31-linked corneal dystrophies do not significantly affect these properties. The results suggest that mutant forms of betaIG-H3 may require other cornea-specific factors, to form the abnormal accumulations in 5q31-linked corneal dystrophies.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X