Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

YEAF1/RYBP and YAF-2 are functionally distinct members of a cofactor family for the YY1 and E4TF1/hGABP transcription factors.

Authors:
Sawa C, Yoshikawa T, Matsuda-Suzuki F, Deléhouzée S, Goto M, Watanabe H, Sawada J, Kataoka K, Handa H
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

The transcription factor hGABP/E4TF1 is a heterotetrameric complex composed of two DNA-binding subunits (hGABP alpha/E4TF1-60) and two transactivating subunits (hGABP beta/E4TF1-53). In order to understand the molecular mechanism of transcriptional regulation by hGABP, we searched for proteins that interact with the non-DNA-binding subunit, hGABP beta, using yeast two-hybrid screening. We identified a human cDNA encoding a protein related to YAF-2 (YY1-associated factor 2), which was previously isolated as an interacting partner of the Ying-Yang-1 (YY1) transcription factor. Reflecting this similarity, both YAF-2 and this novel protein (named YEAF1 for YY1- and E4TF1/hGABP-associated factor-1) interacted with hGABP beta and YY1 in vitro and in vivo, indicating that YEAF1 and YAF-2 constitute a cofactor family for these two structurally distinct transcription factors. By using yeast three-hybrid assay, we demonstrated that hGABP beta and YY1 formed a complex only in the presence of YEAF1, indicating that YEAF1 is a bridging factor of these two transcription factors. These cofactors are functionally different in that YAF-2 positively regulates the transcriptional activity of hGABP but YEAF1 negatively regulates this activity. Also, YAF-2 mRNA is highly expressed in skeletal muscle, whereas YEAF1 mRNA is highly expressed in placenta. We speculate that the transcriptional activity of hGABP is in part regulated by the expression levels of these tissue-specific cofactors. These results provide a novel mechanism of transcriptional regulation by functionally distinct cofactor family members.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X