• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

A role for histone H2B during repair of UV-induced DNA damage in Saccharomyces cerevisiae.

To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Delta and rad52Delta mutants but not in rad6Delta or rad18Delta mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Delta) or error-free (rad30Delta) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Delta mutation. When combined with a ubc13Delta mutation, which is also epistatic with rad5Delta, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.

Pubmed ID: 11973294

Authors

  • Martini EM
  • Keeney S
  • Osley MA

Journal

Genetics

Publication Data

April 25, 2002

Associated Grants

  • Agency: NIGMS NIH HHS, Id: GM40118
  • Agency: NIGMS NIH HHS, Id: GM58673

Mesh Terms

  • Adenosine Triphosphatases
  • Amino Acid Sequence
  • Chromatin
  • DNA Damage
  • DNA Helicases
  • DNA Repair
  • DNA, Fungal
  • Epistasis, Genetic
  • Fungal Proteins
  • Histones
  • Micrococcal Nuclease
  • Molecular Sequence Data
  • Mutation
  • Nucleosomes
  • Pyrimidine Dimers
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Ultraviolet Rays