Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator.

Zhang H, Peters KW, Sun F, Marino CR, Lang J, Burgoyne RD, Frizzell RA
The Journal of biological chemistry


The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel whose phosphorylation regulates both channel gating and its trafficking at the plasma membrane. Cysteine string proteins (Csps) are J-domain-containing, membrane-associated proteins that have been functionally implicated in regulated exocytosis. Therefore, we evaluated the possibility that Csp is involved in regulated CFTR trafficking. We found Csp expressed in mammalian epithelial cell lines, several of which express CFTR. In Calu-3 airway cells, immunofluorescence colocalized Csp with calnexin in the endoplasmic reticulum and with CFTR at the apical membrane domain. CFTR coprecipitated with Csp from Calu-3 cell lysates. Csp associated with both core-glycosylated immature and fully glycosylated mature CFTRs (bands B and C); however, in relation to the endogenous levels of the B and C bands expressed in Calu-3 cells, the Csp interaction with band B predominated. In vitro protein binding assays detected physical interactions of both mammalian Csp isoforms with the CFTR R-domain and the N terminus, having submicromolar affinities. In Xenopus oocytes expressing CFTR, Csp overexpression decreased the chloride current and membrane capacitance increases evoked by cAMP stimulation and decreased the levels of CFTR protein detected by immunoblot. In mammalian cells, the steady-state expression of CFTR band C was eliminated, and pulse-chase studies showed that Csp coexpression blocked the conversion of immature to mature CFTR and stabilized band B. These results demonstrate a primary role for Csp in CFTR protein maturation. The physical interaction of this Hsc70-binding protein with immature CFTR, its localization in the endoplasmic reticulum, and the decrease in production of mature CFTR observed during Csp overexpression reflect a role for Csp in CFTR biogenesis. The documented role of Csp in regulated exocytosis, its interaction with mature CFTR, and its coexpression with CFTR at the apical membrane domain of epithelial cells may reflect also a role for Csp in regulated CFTR trafficking at the plasma membrane.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.