NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility.

Authors:
Jost CR, Van Der Zee CE, In 't Zandt HJ, Oerlemans F, Verheij M, Streijger F, Fransen J, Heerschap A, Cools AR, Wieringa B
Affiliation:
Journal:
The European journal of neuroscience

Abstract

Creatine kinases are important in maintaining cellular-energy homeostasis, and neuroprotective effects have been attributed to the administration of creatine and creatine-like compounds. Herein we examine whether ablation of the cytosolic brain-type creatine kinase (B-CK) in mice has detrimental effects on brain development, physiological integrity or task performance. Mice deficient in B-CK (B-CK-/-) showed no gross abnormalities in brain anatomy or mitochondrial ultrastructure, but had a larger intra- and infrapyramidal mossy fibre area. Nuclear magnetic resonance spectroscopy revealed that adenosine triphosphate (ATP) and phosphocreatine (PCr) levels were unaffected, but demonstrated an apparent reduction of the PCr left arrow over right arrow ATP phosphorus exchange capacity in these mice. When assessing behavioural characteristics B-CK-/- animals showed diminished open-field habituation. In the water maze, adult B-CK-/- mice were slower to learn, but acquired the spatial task. This task performance deficit persisted in 24-month-old, aged B-CK-/- mice, on top of the age-related memory decline normally seen in old animals. Finally, a delayed development of pentylenetetrazole-induced seizures (creating a high-energy demand) was observed in B-CK-/- mice. It is suggested that the persistent expression of the mitochondrial isoform ubiquitous mitochondrial CK (UbCKmit) in the creatine/phospho-creatine shuttle provides compensation for the loss of B-CK in the brain. Our studies indicate a role for the creatine-phosphocreatine/CK circuit in the formation or maintenance of hippocampal mossy fibre connections, and processes that involve habituation, spatial learning and seizure susceptibility. However, for fuelling of basic physiological activities the role of B-CK can be compensated for by other systems in the versatile and robust metabolic-energy network of the brain.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X