Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90-kDa heat shock protein and the hepatitis virus B X-associated protein 2.

Sumanasekera WK, Tien ES, Turpey R, Vanden Heuvel JP, Perdew GH
The Journal of biological chemistry


The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-inducible transcription factor, which belongs to the nuclear receptor superfamily. PPARalpha mediates the carcinogenic effects of peroxisome proliferators in rodents. In humans, PPARalpha plays a fundamental role in regulating energy homeostasis via control of lipid metabolism. To study the possible role of chaperone proteins in the regulation of PPARalpha activity, a monoclonal antibody (mAb) was made against PPARalpha and designated as 3B6/PPAR. The specificity of mAb 3B6/PPAR in recognizing PPARalpha was tested in immunoprecipitations using in vitro translated PPAR subtypes. The mAb 3B6/PPAR recognized PPARalpha, failed to bind to PPARbeta or PPARgamma, and is efficient in both immunoprecipitating and visualizing the receptor on protein blots. The immunoprecipitation of PPARalpha in mouse liver cytosol using mAb 3B6/PPAR has resulted in the detection of two co-immunoprecipitated proteins, which are heat shock protein 90 (hsp90) and the hepatitis B virus X-associated protein 2 (XAP2). The concomitant depletion of PPARalpha in hsp90-depleted mouse liver cytosol was also detected. Complex formation between XAP2 and PPARalpha/FLAG was also demonstrated in an in vitro translation binding assay. hsp90 interacts with PPARalpha in a mammalian two-hybrid assay and binds to the E/F domain. Transient expression of XAP2 co-expressed with PPARalpha resulted in down-regulation of a peroxisome proliferator response element-driven reporter gene activity. Taken together, these results indicate that PPARalpha is in a complex with hsp90 and XAP2, and XAP2 appears to function as a repressor. This is the first demonstration that PPARalpha is stably associated with other proteins in tissue extracts and the first nuclear receptor shown to functionally interact with XAP2.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.