X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy.

Authors:
Setchell KD, Heubi JE, Bove KE, O'Connell NC, Brewsaugh T, Steinberg SJ, Moser A, Squires RH
Affiliation:
Journal:
Gastroenterology

Abstract

BACKGROUND & AIMS: Inborn errors of bile acid metabolism may present as neonatal cholestasis and fat-soluble vitamin malabsorption or as late onset chronic liver disease. Our aim was to fully characterize a defect in bile acid synthesis in a 2-week-old African-American girl presenting with coagulopathy, vitamin D and E deficiencies, and mild cholestasis and in her sibling, whose liver had been used for orthotopic liver transplantation (OLT). METHODS: Bile acids were measured by mass spectrometry in urine, bile, serum, and feces of the patient and in urine from the unrelated recipient. RESULTS: Liver biopsy specimens showed neonatal hepatitis with giant cell transformation and hepatocyte necrosis; peroxisomes were reduced in number. High concentrations of (25R)3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid in the urine, bile, and serum established a pattern similar to that of Zellweger syndrome and identical to the Alligator mississippiensis. Serum phytanic acid was normal, whereas pristanic acid was markedly elevated. Biochemical, MRI, and neurologic findings were inconsistent with a generalized defect of peroxisomal function and were unique. Analysis of the urine from the recipient of the deceased sibling's liver confirmed the same bile acid synthetic defect. A deficiency in 2-methylacyl-CoA racemase, which is essential for conversion of (25R)THCA to its 25S-isomer, the substrate to initiate peroxisomal beta-oxidation to primary bile acids, was confirmed by DNA analysis revealing a missense mutation (S52P) in the gene encoding this enzyme. Long-term treatment with cholic acid normalized liver enzymes and prevented progression of symptoms. CONCLUSIONS: This genetic defect further highlights bile acid synthetic defects as a cause of neonatal cholestasis.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X