NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells.

Authors:
Liang JS, Kim T, Fang S, Yamaguchi J, Weissman AM, Fisher EA, Ginsberg HN
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

Apolipoprotein B100 (apoB) is a large (520-kDa) complex secretory protein; its secretion is regulated posttranscriptionally by several degradation pathways. The best described of these degradative processes is co-translational ubiquitinylation and proteasomal degradation of nascent apoB, involving the 70- and 90-kDa heat shock proteins and the multiple components of the proteasomal pathway. Ubiquitinylation involves several proteins, including ligases called E3s, that coordinate the covalent binding of ubiquitin to target proteins. The recent discovery that tumor autocrine motility factor receptor, also known as gp78, is an endoplasmic reticulum (ER)-associated E3, raised the possibility that this E3 might be involved in the ER-associated degradation of nascent apoB. In a series of experiments in HepG2 cells, we demonstrated that overexpression of gp78 was sufficient for increased ubiquitinylation and proteasomal degradation of apoB, with reduced secretion of apoB-lipoproteins. This action of gp78 was specific: overexpression of the protein did not affect secretion of either albumin or apolipoprotein AI. Furthermore, overexpression of a cytosolic E3, Itch, had no effect on apoB secretion. Finally, using an in vitro translation system, we demonstrated that gp78 led to increased ubiquitinylation and proteasomal degradation of apoB48. Together, these results indicate that an ER-associated protein, gp78, is a bona fide E3 ligase in the apoB ER-associated degradation pathway.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X