Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant.

Authors:
Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H
Affiliation:
Journal:
Plant molecular biology

Abstract

Potassium is the most abundant cation in the cytosol, where it plays a role in basal functions. Rapid uptake and distribution of K+ is therefore required for plant growth. Three members of the so-called Shaker K+ channel gene family (nine genes identified in Arabidopsis) play a role in these transports: AKT1, SKOR and AKT2. The encoded proteins are involved in K+ uptake by the root, K+ secretion into the xylem sap and K+ transport in the phloem tissues, respectively. Using the GUS reporter strategy, we have found that another Shaker channel gene, AtKC1, is expressed in epidermal and cortical cells in roots (supporting the hypothesis of a role in K+ uptake from the soil, together with AKT1), and in trichomes and hydathodes in leaves. These four genes were selected for expression studies, and two-hybrid experiments were performed for channels displaying overlapping expression patterns. The data support the hypothesis that physical interactions could occur in planta between AtKC1 and AKT1, and between AKT1 and AKT2. Potassium deficiency, salt stress and hormonal treatments (ABA, BA, 2,4-D) were found to differentially affect channel mRNA levels, each channel displaying its own regulation pattern. The most prominent effects were (1) a strong induction of AtKC1 transcript accumulation in leaves (hydathodes, trichomes and leaf epidermis) in response to NaCl treatment, suggesting a key role of the protein in adaptation to saline conditions, and (2) a strong decrease in SKOR transcript levels by hormones, supporting the hypothesis that K+ secretion into the xylem sap is under tight hormonal control.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X