Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Mutation of KCNK5 or Kir3.2 potassium channels in mice does not change minimum alveolar anesthetic concentration.

Gerstin KM, Gong DH, Abdallah M, Winegar BD, Eger EI, Gray AT
Anesthesia and analgesia


Several reports suggest that clinically used concentrations of inhaled anesthetics can increase conductance through noninactivating potassium channels and that the resulting hyperpolarization might decrease excitability, thereby leading to the anesthetic state. We speculated that animals deficient in such potassium channels might be resistant to the effects of anesthetics. Thus, in the present study, we measured the minimum alveolar anesthetic concentration (MAC) needed to prevent movement in response to a noxious stimulus in 50% of adult mice lacking functional KCNK5 potassium channel subunits and compared these results with those for heterozygous and wild-type mice. We also measured MAC in weaver mice that had a mutation in the potassium channel Kir3.2 and compared the resulting values with those for wild-type mice. MAC values for desflurane, halothane, and isoflurane for KCNK5-deficient mice and isoflurane MAC values for weaver mice did not differ from MAC values found in control mice. Our results do not support the notion that these potassium channels mediate the capacity of inhaled anesthetics to produce immobility. In addition, we found that the weaver mice did not differ from control mice in their susceptibility to convulsions from the nonimmobilizers flurothyl [di-(2,2,2,-trifluoroethyl)ether] or 2N (1,2-dichlorohexafluorocyclobutane). IMPLICATIONS: Mice harboring mutations in either of two different potassium channels have minimum alveolar anesthetic concentration (MAC) values that do not differ from MAC values found in control mice. Such findings do not support the notion that these potassium channels mediate the capacity of inhaled anesthetics to produce immobility in the face of noxious stimulation.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.