Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Stimulation of signal transducer and activator of transcription-1 (STAT1)-dependent gene transcription by lipopolysaccharide and interferon-gamma is regulated by mammalian target of rapamycin.

Kristof AS, Marks-Konczalik J, Billings E, Moss J
The Journal of biological chemistry


Mammalian target of rapamycin (mTOR) and phosphatidylinositol 3-kinase (PI3K) regulate cell growth, protein synthesis, and apoptosis in response to nutrients and mitogens. As an important source of nitric oxide during inflammation, human inducible nitric oxide synthase also plays a role in the regulation of cytokine-driven cell proliferation and apoptosis. The role of mTOR and PI3K in the activation of human inducible nitric oxide synthase transcription by cytokines and lipopolysaccharide (LPS) was investigated in lung epithelial adenocarcinoma (A549) cells. LY294002, a dual mTOR and PI3K inhibitor, blocked human inducible nitric oxide synthase (hiNOS) promoter activation and mRNA induction by cytokines and LPS in a PI3K-independent fashion. On gene expression analysis, LY294002 selectively blocked the induction of a subset of 14 LPS/interferon-gamma (IFN-gamma)-induced genes, previously characterized as signal transducer and activator of transcription-1 (STAT1)-dependent. LY294002, but not wortmannin, inhibited LPS/IFN-gamma-dependent STAT1 phosphorylation at Ser-727 and STAT1 activity. Consistent with dual inhibition of mTOR and PI3K by LY294002, dominant-negative mTOR, anti-mTOR small interfering RNA, or rapamycin each inhibited phosphorylation of STAT1 only in the presence of wortmannin. LPS/IFN-gamma led to the formation of a macromolecular complex containing mTOR, STAT1, as well as protein kinase C delta, a known STAT1alpha kinase. Thus, LPS and IFN-gamma activate the PI3K and mTOR pathways, which converge to regulate STAT1-dependent transcription of pro-apoptotic and pro-inflammatory genes in a rapamycin-insensitive manner.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.