Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


True XP group E patients have a defective UV-damaged DNA binding protein complex and mutations in DDB2 which reveal the functional domains of its p48 product.

Rapić-Otrin V, Navazza V, Nardo T, Botta E, McLenigan M, Bisi DC, Levine AS, Stefanini M
Human molecular genetics


Xeroderma pigmentosum (XP) is a skin cancer-prone autosomal recessive disease characterized by inability to repair UV-induced DNA damage. The major form of XP is defective in nucleotide excision repair (NER) and comprises seven complementation groups (A-G). The genes defective in all groups have been identified unambiguously with the exception of group E. The cells of some XP-E patients are deficient in a protein complex (consisting of two subunits: p127/DDBI and p48/DDB2) which binds to UV-damaged DNA (UV-DDB) and is specifically involved in the removal of photoproducts from the non-transcribed regions of the genome. However, other XP-E patients have been reported not to lack UV-damaged DNA binding activity (DDB(+)). Here we describe several genetically unrelated XP-E patients, not previously analyzed in depth, each carrying two mutated alleles for DDB2, causing either a single amino acid change or a protein truncation or internal deletion. These defects result in a severe decrease of detectable p48 protein, abolish interaction with the p127 subunit, and produce a deficiency in UV-DDB binding activity (DDB(-)). The role of p48 in the repair defect of these patients was demonstrated in vivo and in vitro. Investigation of four DDB(+) cell strains from patients previously assigned to XP-E, allowed us to reclassify all of them into other groups and to show that they do not share the molecular and biochemical features typical for XP-E. Besides confirming that the true XP-E phenotype is DDB(-), resulting from defects in a single gene, DDB2, our results identify the functional domains of the corresponding p48 protein.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.