Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans.

Authors:
Doyon Y, Selleck W, Lane WS, Tan S, Côté J
Affiliation:
Journal:
Molecular and cellular biology

Abstract

The NuA4 histone acetyltransferase (HAT) multisubunit complex is responsible for acetylation of histone H4 and H2A N-terminal tails in yeast. Its catalytic component, Esa1, is essential for cell cycle progression, gene-specific regulation and has been implicated in DNA repair. Almost all NuA4 subunits have clear homologues in higher eukaryotes, suggesting that the complex is conserved throughout evolution to metazoans. We demonstrate here that NuA4 complexes are indeed present in human cells. Tip60 and its splice variant Tip60b/PLIP were purified as stable HAT complexes associated with identical polypeptides, with 11 of the 12 proteins being homologs of yeast NuA4 subunits. This indicates a highly conserved subunit composition and the identified human proteins underline the role of NuA4 in the control of mammalian cell proliferation. ING3, a member of the ING family of growth regulators, links NuA4 to p53 function which we confirmed in vivo. Proteins specific to the human NuA4 complexes include ruvB-like helicases and a bromodomain-containing subunit linked to ligand-dependent transcription activation by the thyroid hormone receptor. We also demonstrate that subunits MRG15 and DMAP1 are present in distinct protein complexes harboring histone deacetylase and SWI2-related ATPase activities, respectively. Finally, analogous to yeast, a recombinant trimeric complex formed by Tip60, EPC1, and ING3 is sufficient to reconstitute robust nucleosomal HAT activity in vitro. In conclusion, the NuA4 HAT complex is highly conserved in eukaryotes, in which it plays primary roles in transcription, cellular response to DNA damage, and cell cycle control.

BioGRID Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X