Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion.

Pawlikowska L, Groen A, Eppens EF, Kunne C, Ottenhoff R, Looije N, Knisely AS, Killeen NP, Bull LN, Elferink RP, Freimer NB
Human molecular genetics


Mutations in ATP8B1, a broadly expressed P-type ATPase, result, through unknown mechanisms, in disorders of bile secretion. These disorders vary in severity from mild and episodic to progressive with liver failure. We generated Atp8b1G308V/G308V mutant mice, which carry a mutation orthologous to that present in homozygous form in patients from the Amish index kindred for severe ATP8B1 disease. In contrast to human patients, Atp8b1(G308V/G308V) mice had unimpaired bile secretion and no liver damage, but showed mild abnormalities including depressed weight at weaning and elevated serum bile salt levels. We challenged the hepatobiliary metabolism of Atp8b1G308V/G308V mice by administering exogenous bile salts. Upon bile salt feeding, Atp8b1G308V/G308V mice, but not wild-types, demonstrated serum bile salt accumulation, hepatic injury and expansion of the systemic bile salt pool. Unexpectedly, this failure of bile salt homeostasis occurred in the absence of any defect in hepatic bile secretion. Upon infusion of a hydrophobic bile salt, wild-type mice developed cholestasis while Atp8b1G308V/G308V mice maintained high biliary output and more extensively rehydroxylated the infused bile salt. Increased bile salt hydroxylation, which reduces bile salt toxicity, may explain the milder phenotype in Atp8b1G308V/G308V mice compared with humans with the equivalent mutation. These results demonstrate the key role of Atp8b1 in bile salt homeostasis and highlight the importance of bile salt hydroxylation in the prevention of cholestasis. The mouse phenotype reveals that loss of Atp8b1 disrupts bile salt homeostasis without impairment of canalicular bile secretion; in humans this process is likely to be obscured by early onset of severe liver disease.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.