Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Disruption of the WFS1 gene in mice causes progressive beta-cell loss and impaired stimulus-secretion coupling in insulin secretion.

Authors:
Ishihara H, Takeda S, Tamura A, Takahashi R, Yamaguchi S, Takei D, Yamada T, Inoue H, Soga H, Katagiri H, Tanizawa Y, Oka Y
Affiliation:
Journal:
Human molecular genetics

Abstract

Wolfram syndrome, an autosomal recessive disorder characterized by juvenile-onset diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene. In order to gain insight into the pathophysiology of this disease, we disrupted the wfs1 gene in mice. The mutant mice developed glucose intolerance or overt diabetes due to insufficient insulin secretion in vivo. Islets isolated from mutant mice exhibited a decrease in insulin secretion in response to glucose. The defective insulin secretion was accompanied by reduced cellular calcium responses to the secretagogue. Immunohistochemical analyses with morphometry and measurement of whole-pancreas insulin content demonstrated progressive beta-cell loss in mutant mice, while the alpha-cell, which barely expresses WFS1 protein, was preserved. Furthermore, isolated islets from mutant mice exhibited increased apoptosis, as assessed by DNA fragment formation, at high concentration of glucose or with exposure to endoplasmic reticulum-stress inducers. These results strongly suggest that WFS1 protein plays an important role in both stimulus-secretion coupling for insulin exocytosis and maintenance of beta-cell mass, deterioration of which leads to impaired glucose homeostasis. These WFS1 mutant mice provide a valuable tool for understanding better the pathophysiology of Wolfram syndrome as well as WFS1 function.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X