Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Identification of interaction partners and substrates of the cyclin A1-CDK2 complex.

Authors:
Diederichs S, Bäumer N, Ji P, Metzelder SK, Idos GE, Cauvet T, Wang W, Möller M, Pierschalski S, Gromoll J, Schrader MG, Koeffler HP, Berdel WE, Serve H, Müller-Tidow C
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

The CDK2-associated cyclin A1 is essential for spermatogenesis and contributes to leukemogenesis. The detailed molecular functions of cyclin A1 remain unclear, since the molecular networks involving cyclin A1-CDK2 have not been elucidated. Here, we identified novel cyclin A1/CDK2 interaction partners in a yeast triple-hybrid approach. Several novel proteins (INCA1, KARCA1, and PROCA1) as well as the known proteins GPS2 (G-protein pathway suppressor 2), Ku70, receptor for activated protein kinase C1/guanine nucleotide-binding protein beta-2-like-1, and mRNA-binding motif protein 4 were identified as interaction partners. These proteins link the cyclin A1-CDK2 complex to diverse cellular processes such as DNA repair, signaling, and splicing. Interactions were confirmed by GST pull-down assays and co-immunoprecipitation. We cloned and characterized the most frequently isolated unknown gene, which we named INCA1 (inhibitor of CDK interacting with cyclin A1). The nuclear INCA1 protein is evolutionarily conserved and lacks homology to any known gene. This novel protein and two other interacting partners served as substrates for the cyclin A1-CDK2 kinase complex. Cyclin A1 and all interaction partners were highly expressed in testis with varying degrees of tissue specificity. The highest expression levels were observed at different time points during testis maturation, whereas expression levels in germ cell cancers and infertile testes decreased. Taken together, we identified testicular interaction partners of the cyclin A1-CDK2 complex and studied their expression pattern in normal organs, testis development, and testicular malignancies. Thereby, we establish a new basis for future functional analyses of cyclin A1. We provide evidence that the cyclin A1-CDK2 complex plays a role in several signaling pathways important for cell cycle control and meiosis.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X