Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Repression of the Transactivating Capacity of the Oncoprotein PLAG1 by SUMOylation.

Authors:
Van Dyck F, Delvaux EL, Van de Ven WJ, Chavez MV
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

Human pleomorphic adenoma gene 1 (PLAG1), a developmentally regulated proto-oncogene, is consistently rearranged and overexpressed in pleomorphic salivary gland adenomas and lipoblastomas with 8q12 translocations. Together with PLAGL1 and PLAGL2, PLAG1 belongs to a subfamily of C(2)H(2) zinc finger transcription factors that activate transcription through binding to the bipartite consensus sequence GRGGC(N)(6-8)GGG. Ectopic expression of PLAG1 deregulates target genes and presumably results in uncontrolled cell proliferation. To gain insight into molecular mechanisms regulating PLAG transcriptional capacity, we searched for interaction partners using the yeast two-hybrid system and confirmed these by glutathione S-transferase pull-down. Ubiquitin-conjugating enzyme 9 (UBC9) and protein inhibitor of activated STAT (PIAS) proteins were first identified as genuine interacting partners of mouse PlagL2. Because UBC9 and PIAS are components of the small ubiquitin-related modifier (SUMO) modification pathway, we hypothesized that PLAG proteins could be SUMOylated. Here, we report results obtained for founding family member PLAG1. Its endogenous SUMOylation was demonstrated, and SUMOylation of PLAG1 was further investigated in cells co-transfected with PLAG1 and SUMO-1 DNA or a SUMO-1 mutant form and similarly examined in the presence or absence of DNA encoding the various PIAS proteins. Using anti-PLAG1 antibodies, we discovered single and double SUMO-1-modified forms of PLAG1. By mutating predicted SUMO consensus sites, we defined two important target lysines for SUMOylation in PLAG1, Lys-244 and Lys-263. Moreover, mutation of both SUMO consensus sequences, resulting in inhibition of SUMOylation, led to a significant increase of the transactivation capacity of PLAG1. Nuclear distribution of PLAG1 was not measurably influenced. Our results suggest a direct repression of the transactivating capacity of the oncoprotein PLAG1 by SUMOylation.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X