Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse.

Authors:
Barth AL, Gerkin RC, Dean KL
Affiliation:
Journal:
The Journal of neuroscience : the official journal of the Society for Neuroscience

Abstract

Identifying the cells and circuits that underlie perception, behavior, and learning is a central goal of contemporary neuroscience. Although techniques such as lesion analysis, functional magnetic resonance imaging, 2-deoxyglucose studies, and induction of gene expression have been helpful in determining the brain areas responsible for particular functions, these methods are technically limited. Currently, there is no method that allows for the identification and electrophysiological characterization of individual neurons that are associated with a particular function in living tissue. We developed a strain of transgenic mice in which the expression of the green fluorescent protein (GFP) is controlled by the promoter of the activity-dependent gene c-fos. These mice enable an in vivo or ex vivo characterization of the cells and synapses that are activated by particular pharmacological and behavioral manipulations. Cortical and subcortical fosGFP expression could be induced in a regionally restricted manner after specific activation of neuronal ensembles. Using the fosGFP mice to identify discrete cortical areas, we found that neurons in sensory-spared areas rapidly regulate action potential threshold and spike frequency to decrease excitability. This method will enhance our ability to study the way neuronal networks are activated and changed by both experience and pharmacological manipulations. In addition, because activated neurons can be functionally characterized, this tool may enable the development of better pharmaceuticals that directly affect the neurons involved in disease states.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X