Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast.

Ross KL, Davis CN, Fridovich-Keil JL
Molecular genetics and metabolism


The metabolism of galactose via enzymes of the Leloir pathway: galactokinase, galactose-1-P uridylyltransferase, and UDP galactose-4'-epimerase, is a process that has been conserved from Escherichia coli through humans. Impairment of this pathway in patients results in the disease galactosemia. Despite decades of study, the underlying pathophysiology in galactosemia remains unknown. Here we have defined the functional and metabolic implications of impaired galactose metabolism in yeast, by asking two questions: (1) What is the impact of loss of each of the three Leloir enzymes on the ability of cells to metabolize galactose, and on their sensitivity to galactose, and (2) what is the relationship between gal-1P and galactose-sensitivity in yeast? Our results demonstrate that only transferase-null cells are able to deplete their medium of galactose; deletion of kinase or epimerase halts this process. In contrast, only kinase-null cultures grow well in glycerol/ethanol medium despite the addition of galactose; both transferase and epimerase-null yeast arrest growth under these conditions. Indeed, epimerase-null yeast arrest growth at galactose concentrations 10-fold lower than do their transferase-null counterparts. Secondary deletion of kinase relieves growth arrest in both strains. Finally, rather than a continuous relationship between gal-1P and growth arrest, we observed a threshold level of gal-1P (approximately 10 nmol/mg cell DM) above which both transferase-null and epimerase-null cultures could not grow. These results both confirm and significantly extend prior knowledge of galactose metabolism in yeast, and set the stage for future studies into the mediators and mechanism of Leloir-impaired galactose sensitivity in eukaryotes.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.