X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

PAX4 gene variations predispose to ketosis-prone diabetes.

Authors:
Mauvais-Jarvis F, Smith SB, Le May C, Leal SM, Gautier JF, Molokhia M, Riveline JP, Rajan AS, Kevorkian JP, Zhang S, Vexiau P, German MS, Vaisse C
Affiliation:
Journal:
Human molecular genetics

Abstract

Ketosis-prone diabetes (KPD) is a rare form of type 2 diabetes, mostly observed in subjects of west African origin (west Africans and African-Americans), characterized by fulminant and phasic insulin dependence, but lacking markers of autoimmunity observed in type 1 diabetes. PAX4 is a transcription factor essential for the development of insulin-producing pancreatic beta-cells. Recently, a missense mutation (Arg121Trp) of PAX4 has been implicated in early and insulin deficient type 2 diabetes in Japanese subjects. The phenotype similarities between KPD and Japanese carriers of Arg121Trp have prompted us to investigate the role of PAX4 in KPD. We have screened 101 KPD subjects and we have found a new variant in the PAX4 gene (Arg133Trp), specific to the population of west African ancestry, and which predisposes to KPD under a recessive model. Homozygous Arg133Trp PAX4 carriers were found in 4% of subjects with KPD but not in 355 controls or 147 subjects with common type 2 or type 1 diabetes. In vitro, the Arg133Trp variant showed a decreased transcriptional repression of target gene promoters in an alpha-TC1.6 cell line. In addition, one KPD patient was heterozygous for a rare PAX4 variant (Arg37Trp) that was not found in controls and that showed a more severe biochemical phenotype than Arg133Trp. Clinical investigation of the homozygous Arg133Trp carriers and of the Arg37Trp carrier demonstrated a more severe alteration in insulin secretory reserve, during a glucagon-stimulation test, compared to other KPD subjects. Together these data provide the first evidence that ethnic-specific gene variants may contribute to the predisposition to this particular form of diabetes and suggest that KPD, like maturity onset diabetes of the young, is a rare, phenotypically defined but genetically heterogeneous form of type 2 diabetes.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X