X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Retinoic acid mediates degradation of IRS-1 by the ubiquitin-proteasome pathway, via a PKC-dependant mechanism.

Authors:
del Rincón SV, Guo Q, Morelli C, Shiu HY, Surmacz E, Miller WH
Affiliation:
Journal:
Oncogene

Abstract

Insulin receptor substrate-1 (IRS-1) mediates signaling from the insulin-like growth factor type-I receptor. We found that all-trans retinoic acid (RA) decreases IRS-1 protein levels in MCF-7, T47-D, and ZR75.1 breast cancer cells, which are growth arrested by RA, but not in the RA-resistant MDA-MB-231 and MDA-MB-468 cells. Based on prior reports of ubiquitin-mediated degradation of IRS-1, we investigated the ubiquitination of IRS-1 in RA-treated breast cancer cells. Two proteasome inhibitors, MG-132 and lactacystin, blocked the RA-mediated degradation of IRS-1, and RA increased ubiquitination of IRS-1 in the RA-sensitive breast cancer cells. In addition, we found that RA increases serine phosphorylation of IRS-1. To elucidate the signaling pathway responsible for this phosphorylation event, pharmacologic inhibitors were used. Two PKC inhibitors, but not a MAPK inhibitor, blocked the RA-induced degradation and serine phosphorylation of IRS-1. We demonstrate that RA activates PKC-delta in the sensitive, but not in the resistant cells, with a time course that is consistent with the RA-induced decrease of IRS-1. We also show that: (1) RA-activated PKC-delta phosphorylates IRS-1 in vitro, (2) PKC-delta and IRS-1 interact in RA-treated cells, and (3) mutation of three PKC-delta serine sites in IRS-1 to alanines results in no RA-induced in vitro phosphorylation of IRS-1. Together, these results indicate that RA regulates IRS-1 levels by the ubiquitin-proteasome pathway, involving a PKC-sensitive mechanism.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X