NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Differential contribution of the three Aph1 genes to gamma-secretase activity in vivo.

Authors:
Serneels L, Dejaegere T, Craessaerts K, Horré K, Jorissen E, Tousseyn T, Hébert S, Coolen M, Martens G, Zwijsen A, Annaert W, Hartmann D, De Strooper B
Affiliation:
Journal:
Proceedings of the National Academy of Sciences of the United States of America

Abstract

Gamma-secretase is the protease responsible for amyloid beta peptide release and is needed for Notch, N-Cadherin, and possibly other signaling pathways. The protease complex consists of at least four subunits, i.e., Presenilin, Aph1, Pen2, and Nicastrin. Two different genes encode Aph1A and Aph1B in man. A duplication of Aph1B in rodents has given rise to a third gene, Aph1C. Different mixes of gamma-secretase subunits assemble in at least four human and six rodent complexes but it is not known whether they have different activities in vivo. We report here the inactivation of the three Aph1 genes in mice. Aph1A-/- embryos show a lethal phenotype characterized by angiogenesis defects in the yolk sac, neuronal tube malformations, and mild somitogenesis defects. Aph1B-/- or C-/- or the combined Aph1BC-/- mice (which can be considered as a model for total Aph1B loss in human) survive into adulthood. However, Aph1BC-/- deficiency causes a mild but significant reduction in amyloid beta percursor protein processing in selective regions of the adult brain. We conclude that the biochemical and physiological repercussions of genetically reducing gamma-secretase activity via the different Aph1 components are quite divergent and tissue specific. Our work provides in vivo evidence for the concept that different gamma-secretase complexes may exert different biological functions. In the context of Alzheimer's disease therapy, this implies the theoretical possibility that targeting specific gamma-secretase subunit combinations could yield less toxic drugs than the currently available general inhibitors of gamma-secretase activity.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X