NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination.

Authors:
Le N, Nagarajan R, Wang JY, Araki T, Schmidt RE, Milbrandt J
Affiliation:
Journal:
Proceedings of the National Academy of Sciences of the United States of America

Abstract

Egr2 is a transcription factor required for peripheral nerve myelination in rodents, and mutations in Egr2 are associated with congenital hypomyelinating neuropathy (CHN) in humans. To further study its role in myelination, we generated mice harboring a hypomorphic Egr2 allele (Egr2Lo) that survive for up to 3 weeks postnatally, a period of active myelination in rodents. These Egr2Lo/Lo mice provided the opportunity to study the molecular effects of Egr2 deficiency on Schwann cell biology, an analysis that was not possible previously, because of the perinatal lethality of Egr2-null mice. Egr2Lo/Lo mice phenocopy CHN, as evidenced by the severe hypomyelination and increased numbers of proliferating Schwann cells of the peripheral nerves. Comparison of sciatic nerve gene expression profiles during development and after crush injury with those of Egr2Lo/Lo Schwann cells revealed that they are developmentally arrested, with down-regulation of myelination-related genes and up-regulation of genes associated with immature and promyelinating Schwann cells. One of the abnormally elevated genes in Egr2Lo/Lo Schwann cells, Sox2, encodes a transcription factor that is crucial for maintenance of neural stem cell pluripotency. Wild-type Schwann cells infected with Sox2 adenovirus or lentivirus inhibited expression of myelination-associated genes (e.g., myelin protein zero; Mpz), and failed to myelinate axons in vitro, but had an enhanced proliferative response to beta-neuregulin. The characterization of a mouse model of CHN has provided insight into Schwann cell differentiation and allowed the identification of Sox2 as a negative regulator of myelination.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X