• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN.

Spinal muscular atrophy (SMA) is an autosomal recessive disorder in humans which results in the loss of motor neurons. It is caused by reduced levels of the survival motor neuron (SMN) protein as a result of loss or mutation of the SMN1 gene. SMN is encoded by two genes, SMN1 and SMN2, which essentially differ by a single nucleotide in exon 7. As a result, the majority of the transcript from SMN2 lacks exon 7 (SMNDelta7). SMNDelta7 may be toxic and detrimental in SMA, which, if true, could lead to adverse effects with drugs that stimulate expression of SMN2. To determine the role of SMNDelta7 in SMA, we created transgenic mice expressing SMNDelta7 and crossed them onto a severe SMA background. We found that the SMNDelta7 is not detrimental in that it extends survival of SMA mice from 5.2 to 13.3 days. Unlike mice with selective deletion of SMN exon 7 in muscle, these mice with a small amount of full-length SMN (FL-SMN) did not show a dystrophic phenotype. This indicates that low levels of FL-SMN as found in SMA patients and absence of FL-SMN in muscle tissue have different effects and raises the question of the importance of high SMN levels in muscle in the presentation of SMA. SMN and SMNDelta7 can associate with each other and we suggest that this association stabilizes SMNDelta7 protein turnover and ameliorates the SMA phenotype by increasing the amount of oligomeric SMN. The increased survival of the SMNDelta7 SMA mice we report will facilitate testing of therapies and indicates the importance of considering co-complexes of SMN and SMNDelta7 when analyzing SMN function.

Pubmed ID: 15703193

Authors

  • Le TT
  • Pham LT
  • Butchbach ME
  • Zhang HL
  • Monani UR
  • Coovert DD
  • Gavrilina TO
  • Xing L
  • Bassell GJ
  • Burghes AH

Journal

Human molecular genetics

Publication Data

March 15, 2005

Associated Grants

  • Agency: NINDS NIH HHS, Id: NS3860

Mesh Terms

  • Animals
  • Cyclic AMP Response Element-Binding Protein
  • Exons
  • Gene Expression Regulation
  • Humans
  • Mice
  • Mice, Transgenic
  • Muscular Atrophy, Spinal
  • Nerve Tissue Proteins
  • Protein Binding
  • RNA-Binding Proteins
  • SMN Complex Proteins
  • Survival of Motor Neuron 1 Protein
  • Survival of Motor Neuron 2 Protein