X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

IL-2 increases human telomerase reverse transcriptase activity transcriptionally and posttranslationally through phosphatidylinositol 3'-kinase/Akt, heat shock protein 90, and mammalian target of rapamycin in transformed NK cells.

Authors:
Kawauchi K, Ihjima K, Yamada O
Affiliation:
Journal:
Journal of immunology (Baltimore, Md. : 1950)

Abstract

Human telomerase activity is induced by Ag receptor ligation in T and B cells. However, it is unknown whether telomerase activity is increased in association with activation and proliferation of NK cells. We found that telomerase activity in a human NK cell line (NK-92), which requires IL-2 for proliferation, was increased within 24 h after stimulation with IL-2. Levels of human telomerase reverse transcriptase (hTERT) mRNA and protein correlated with telomerase activity. ERK1/2 and Akt kinase (Akt) were activated by IL-2 stimulation. LY294002, an inhibitor of PI3K, abolished expression of hTERT mRNA and protein expression and abolished hTERT activity, whereas PD98059, which inhibits MEK1/2 and thus ERK1/2, had no effect. In addition, radicicol, an inhibitor of heat shock protein 90 (Hsp90), and rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), blocked IL-2-induced hTERT activity and nuclear translocation of hTERT but not hTERT mRNA expression. hTERT was coimmunoprecipitated with Akt, Hsp90, mTOR, and p70 S6 kinase (S6K), suggesting that these molecules form a physical complex. Immunoprecipitates of Akt, Hsp90, mTOR, and S6K from IL-2-stimulated NK-92 cells contained telomerase activity. Furthermore, the findings that Hsp90 and mTOR immunoprecipitates from primary samples contained telomerase activity are consistent with the results from NK-92 cells. These results indicate that IL-2 stimulation induces hTERT activation and that the mechanism of IL-2-induced hTERT activation involves transcriptional or posttranslational regulation through the pathway including PI3K/Akt, Hsp90, mTOR, and S6K in NK cells.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X