X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome.

Authors:
Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N
Affiliation:
Journal:
Human molecular genetics

Abstract

Rett syndrome (RTT) is a severe neurodevelopmental disorder almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Most patients affected by classic RTT and a smaller percentage of patients with the milder form 'preserved speech variant' have either point mutations or deletions/duplications in the MECP2 gene. Recently, mutations in the CDKL5 gene, coding for a putative kinase, have been found in female patients with a phenotype overlapping with that of RTT. Here, we report two patients with the early seizure variant of RTT, bearing two novel CDKL5 truncating mutations, strengthening the correlation between CDKL5 and RTT. Considering the similar phenotypes caused by mutations in MECP2 and CDKL5, it has been suggested that the two genes play a role in common pathogenic processes. We show here that CDKL5 is a nuclear protein whose expression in the nervous system overlaps with that of MeCP2, during neural maturation and synaptogenesis. Importantly, we demonstrate that MeCP2 and CDKL5 interact both in vivo and in vitro and that CDKL5 is indeed a kinase, which is able to phosphorylate itself and to mediate MeCP2 phosphorylation, suggesting that they belong to the same molecular pathway. Furthermore, this paper contributes to the clarification of the phenotype associated with CDKL5 mutations and indicates that CDKL5 should be analyzed in each patient showing a clinical course similar to RTT but characterized by a lack of an early normal period due to the presence of seizures.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X