NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Molecular and pharmacological properties of a potent and selective novel nonsteroidal progesterone receptor agonist tanaproget.

Authors:
Zhang Z, Olland AM, Zhu Y, Cohen J, Berrodin T, Chippari S, Appavu C, Li S, Wilhem J, Chopra R, Fensome A, Zhang P, Wrobel J, Unwalla RJ, Lyttle CR, Winneker RC
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

Progesterone receptor (PR) agonists have several important applications in women's health, such as in oral contraception and post-menopausal hormone therapy. Currently, all PR agonists used clinically are steroids. Because of their interactions with other steroid receptors, steroid-metabolizing enzymes, or other steroid-signaling pathways, these drugs can pose significant side effects in some women. Efforts to discover novel nonsteroidal PR agonists with improved biological properties led to the discovery of tanaproget (TNPR). TNPR binds to the PR from various species with a higher relative affinity than reference steroidal progestins. In T47D cells, TNPR induces alkaline phosphatase activity with an EC(50) value of 0.1 nm, comparable with potent steroidal progestins such as medroxyprogesterone acetate (MPA) and trimegestone (TMG), albeit with a reduced efficacy ( approximately 60%). In a mammalian two-hybrid assay to measure PR agonist-induced interaction between steroid receptor co-activator-1 and PR, TNPR showed similar potency (EC(50) value of 0.02 nm) and efficacy to MPA and TMG. Importantly, in key animal models such as the rat ovulation inhibition assay, TNPR demonstrates full efficacy and an enhanced progestational potency (30-fold) when compared with MPA and TMG. Furthermore, TNPR has relatively weak interactions with other steroid receptors and binding proteins and little effect on cytochrome P450 metabolic pathways. Finally, the three-dimensional crystal structure of the PR ligand binding domain with TNPR has been delineated to demonstrate how this nonsteroidal ligand achieves its high binding affinity. Therefore, TNPR is a structurally novel and very selective PR agonist with an improved preclinical pharmacological profile.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X