NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein.

Authors:
Long JZ, Lackan CS, Hadjantonakis AK
Affiliation:
Journal:
BMC biotechnology

Abstract

BACKGROUND: DsRed the red fluorescent protein (RFP) isolated from Discosoma sp. coral holds much promise as a genetically and spectrally distinct alternative to green fluorescent protein (GFP) for application in mice. Widespread use of DsRed has been hampered by several issues resulting in the inability to establish and maintain lines of red fluorescent protein expressing embryonic stem cells and mice. This has been attributed to the non-viability, or toxicity, of the protein, probably as a result of its obligate tetramerization. A mutagenesis approach directing the stepwise evolution of DsRed has produced mRFP1, the first true monomer. mRFP1 currently represents an attractive autofluorescent reporter for use in heterologous systems. RESULTS: We have used embryonic stem cell-mediated transgenesis to evaluate mRFP1 in embryonic stem cells and mice. We find that mRFP1 exhibits the most spatially homogenous expression when compared to the native (tetrameric) and variant dimeric forms of DsRed. High levels of mRFP1 expression do not affect cell morphology, developmental potential or viability and fertility of animals. High levels of widespread mRFP1 expression are maintained in a constitutive manner in embryonic stem cells in culture and in transgenic animals. We have used various optical imaging modalities to visualize mRFP1 expressing cells in culture, in embryos and adult mice. Moreover co-visualization of red, green and cyan fluorescent cells within a sample is easily achieved without the need for specialized methodologies, such as spectral deconvolution or linear unmixing. CONCLUSION: Fluorescent proteins with excitation and/or emission profiles in the red part of the visible spectrum represent distinct partners, or longer wavelength substitutes for GFP. Not only do DsRed-based RFPs provide a genetically and spectrally distinct addition to the available repertoire of autoflorescent proteins, but by virtue of their spectral properties they permit deeper tissue imaging. Our work in generating CAG::mRFP1 transgenic ES cells and mice demonstrates the developmental neutrality of mRFP1 in an organismal context. It paves the way for the use of DsRed-based monomeric RFPs in transgenic and gene targeted approaches which often necessitate spatially and/or temporally restricted reporter expression. Moreover animals of the CAG::mRFP1 transgenic strain serve as a source of RFP tagged tissue for the derivation of cell lines and explant, transplant and embryo chimera experiments.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X