X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Prediction of water and metal binding sites and their affinities by using the Fold-X force field.

Authors:
Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L
Affiliation:
Journal:
Proceedings of the National Academy of Sciences of the United States of America

Abstract

The empirical force field Fold-X was developed previously to allow rapid free energy calculations in proteins. Here, we present an enhanced version of the force field allowing prediction of the position of structural water molecules and metal ions, together called single atom ligands. Fold-X picks up 76% of water molecules found to interact with two or more polar atoms of proteins in high-resolution crystal structures and predicts their position to within 0.8 A on average. The prediction of metal ion-binding sites have success rates between 90% and 97% depending on the metal, with an overall standard deviation on the position of binding of 0.3-0.6 A. The following metals were included in the force field: Mg2+, Ca2+, Zn2+, Mn2+, and Cu2+. As a result, the current version of Fold-X can accurately decorate a protein structure with biologically important ions and water molecules. Additionally, the free energy of binding of Ca2+ and Zn2+ (i.e., the natural logarithm of the dissociation constant) and its dependence on ionic strength correlate reasonably well with the experimental data available in the literature, allowing one to discriminate between high- and low-affinity binding sites. Importantly, the accuracy of the energy prediction presented here is sufficient to efficiently discriminate between Mg2+, Ca2+, and Zn2+ binding.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X