X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins.

Authors:
Khanna H, Hurd TW, Lillo C, Shu X, Parapuram SK, He S, Akimoto M, Wright AF, Margolis B, Williams DS, Swaroop A
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene account for almost 20% of patients with retinitis pigmentosa. Most mutations are detected in alternatively spliced RPGR-ORF15 isoform(s), which are primarily but not exclusively expressed in the retina. We show that, in addition to the axoneme, the RPGR-ORF15 protein is localized to the basal bodies of photoreceptor connecting cilium and to the tip and axoneme of sperm flagella. Mass spectrometric analysis of proteins that were immunoprecipitated from the retinal axoneme-enriched fraction using an anti-ORF15 antibody identified two chromosome-associated proteins, structural maintenance of chromosomes (SMC) 1 and SMC3. Using pulldown assays, we demonstrate that the interaction of RPGR with SMC1 and SMC3 is mediated, at least in part, by the RCC1-like domain of RPGR. This interaction was not observed with phosphorylation-deficient mutants of SMC1. Both SMC1 and SMC3 localized to the cilia of retinal photoreceptors and Madin-Darby canine kidney cells, suggesting a broader physiological relevance of this interaction. Additional immunoprecipitation studies revealed the association of RPGR-ORF15 isoform(s) with the intraflagellar transport polypeptide IFT88 as well as microtubule motor proteins, including KIF3A, p150Glued, and p50-dynamitin. Inhibition of dynein function by overexpressing p50 abrogated the localization of RPGR-ORF15 to basal bodies. Taken together, these results provide novel evidence for the possible involvement of RPGR-ORF15 in microtubule organization and regulation of transport in primary cilia.

BioGRID Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X