X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Presenilin 2 regulates the systolic function of heart by modulating Ca2+ signaling.

Authors:
Takeda T, Asahi M, Yamaguchi O, Hikoso S, Nakayama H, Kusakari Y, Kawai M, Hongo K, Higuchi Y, Kashiwase K, Watanabe T, Taniike M, Nakai A, Nishida K, Kurihara S, Donoviel DB, Bernstein A, Tomita T, Iwatsubo T, Hori M, Otsu K
Affiliation:
Journal:
FASEB journal : official publication of the Federation of American Societies for Experimental Biology

Abstract

Genetic studies of families with familial Alzheimer's disease have implicated presenilin 2 (PS2) in the pathogenesis of this disease. PS2 is ubiquitously expressed in various tissues including hearts. In this study, we examined cardiac phenotypes of PS2 knockout (PS2KO) mice to elucidate a role of PS2 in hearts. PS2KO mice developed normally with no evidence of cardiac hypertrophy and fibrosis. Invasive hemodynamic analysis revealed that cardiac contractility in PS2KO mice increased compared with that in their littermate controls. A study of isolated papillary muscle showed that peak amplitudes of Ca2+ transients and peak tension were significantly higher in PS2KO mice than those in their littermate controls. PS2KO mouse hearts exhibited no change in expression of calcium regulatory proteins. Since it has been demonstrated that PS2 in brain interacts with sorcin, which serves as a modulator of cardiac ryanodine receptor (RyR2), we tested whether PS2 also interacts with RyR2. Immmunoprecipitation analysis showed that PS2, sorcin, and RyR2 interact with each other in HEK-293 cells overexpressing these proteins or in mouse hearts. Immunohistochemistry of heart muscle indicated that PS2 colocalizes with RyR2 and sorcin at the Z-lines. Elevated Ca2+ attenuated the association of RyR2 with PS2, whereas the association of sorcin with PS2 was enhanced. The enhanced Ca2+ transients and contractility in PS2KO mice were observed at low extracellular [Ca2+] but not at high levels of [Ca2+]. Taken together, our results suggest that PS2 plays an important role in cardiac excitation-contraction coupling by interacting with RyR2.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X