Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


S100P, a novel Ca(2+)-binding protein from human placenta. cDNA cloning, recombinant protein expression and Ca2+ binding properties.

Becker T, Gerke V, Kube E, Weber K
European journal of biochemistry / FEBS


A novel member of the S100 protein family, present in human placenta, has been characterized by protein sequencing, cDNA cloning, and analysis of Ca(2+)-binding properties. Since the placenta protein of 95 amino acid residues shares about 50% sequence identity with the brain S100 proteins alpha and beta, we proposed the name S100P. The cDNA was expressed in Escherichia coli and recombinant S100P was purified in high yield. S100P is a homodimer and has two functional EF hands/polypeptide chain. The low-affinity site (Kd = 800 microM), which, in analogy to S100 beta, seems to involve the N-terminal EF hand, can be followed by the Ca(2+)-dependent decrease in tyrosine fluorescence. The high-affinity site, provided by the C-terminal EF hand, influences the reactivity of the sole cysteine which is located in the C-terminal extension (Cys85). Binding to the high-affinity site (Kd = 1.6 microM) can be monitored by fluorescence spectroscopy of S100P labelled at Cys85 with 6-proprionyl-2-dimethylaminonaphthalene (Prodan). The Prodan fluorescence shows a Ca(2+)-dependent red shift of the maximum emission wavelength from 485 nm to 502 nm, which is accompanied by an approximately twofold loss in integrated fluorescence intensity. This indicates that Cys85 becomes more exposed to the solvent in Ca(2+)-bound S100P, making this region of the molecule, the so-called C-terminal extension, an ideal candidate for a putative Ca(2+)-dependent interaction with a cellular target. In p11, a different member of the S100 family, the C-terminal extension which contains a corresponding cysteine (Cys82 in p11), is involved in a Ca(2+)-independent complex formation with the protein ligand annexin II. The combined results support the hypothesis that S100 proteins interact in general with their targets after a Ca(2+)-dependent conformational change which involves hydrophobic residues of the C-terminal extension.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.