We are currently experiencing intermittent outages following SDSC Maintenance, we apologize for any inconvenience.

NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

An evolutionarily conserved function of proliferating cell nuclear antigen for Cdt1 degradation by the Cul4-Ddb1 ubiquitin ligase in response to DNA damage.

Authors:
Hu J, Xiong Y
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

The DNA replication licensing factor Cdt1 is degraded by the ubiquitin-proteasome pathway during S phase of the cell cycle, to ensure one round of DNA replication during each cell division and in response to DNA damage to halt DNA replication. Constitutive expression of Cdt1 causes DNA re-replication and is associated with the development of a subset of human non-small cell-lung carcinomas. In mammalian cells, DNA damage-induced Cdt1 degradation is catalyzed by the Cul4-Ddb1-Roc1 E3 ubiquitin ligase. We report here that overexpression of the proliferating cell nuclear antigen (PCNA) inhibitory domain from the CDK inhibitors p21 and p57, but not the CDK-cyclin inhibitory domain, blocked Cdt1 degradation in cultured mammalian cells after UV irradiation. In vivo soluble Cdt1 and PCNA co-elute by gel filtration and associate with each other physically. Silencing PCNA in cultured mammalian cells or repression of pcn1 expression in fission yeast blocked Cdt1 degradation in response to DNA damage. Unexpectedly, deletion of Ddb1 in fission yeast cells also accumulated Cdt1 in the absence of DNA damage. We suggest that the Cul4-Ddb1 ligase evolved to ubiquitinate Cdt1 during normal cell growth as well as in response to DNA damage and a separate E3 ligase, possibly SCF(Skp2), evolved to either share or take over the function of Cdt1 ubiquitination during normal cell growth and that PCNA is involved in mediating Cdt1 degradation by the Cul4-Ddb1 ligase in response to DNA damage.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X